Apresentamos neste trabalho uma série de estudos sobre os efeitos de perturbações geométricas em alguns modelos da física estatística com transições de fase contínuas, Essas perturbações são causadas por distribuições aleatórias ou aperiódicas (e determinísticas) de campos ou de acoplamentos microscópicos ao longo das redes em que os modelos são definidos. No caso de sistemas aperiódicos sem desordem, mostramos uma grande quantidade de exemplos das possíveis alterações induzidas no comportamento crítico de modelos de Ising, Potts e um modelo para polímeros em interação. Empregamos técnicas não-perturbativas de grupo de renormalização no espaço real (matrizes de transferência para estudar a termodinâmica desses sistemas na região crítica ou ...