Nós estudaremos o comportamento de difeomorfismos do círculo, tanto do ponto de vista combinatório quanto do ponto de vista topológico e da teoria da medida, seguindo os trabalhos de Michael Herman. A cada homeomorfismo do círculo podemos associar um número real positivo, denominado número de rotação. Mostraremos que existe um conjunto de números irracionais de medida de Lebesgue total na reta tal que, se f é um difeomorfismo do círculo de classe \'C POT. r \' que preserva a orientação, com r maior ou igual a 3 e com número de rotação nesse conjunto, então f é pelo menos \'C POT. r - 2\' -conjugada a uma translação irracional. Além disso, mostraremos que dado um caminho \'f IND. t\' de classe \'C POT. 1\' definido em um intervalo [a;b] no ...