Rezultati identifikacije i simulacije dinamičkog ili statičkog radnog sustava značajno ovise o kvaliteti i odabiru ulaznih parametara. U radu je dat uopćen model identifikacije i simulacije radnog sustava u ovisnosti o različitim klasama parametara, temeljen na generaliziranoj regresijskoj neuronskoj (GRNN) mreži. Predložen je i model iteracijskog postupka kojim se pomoću vjerojatnosne neuronske (PNN) mreže vrši ocjena uspješnosti dobivenih simulacijskih rezultata nastalih kao odzivi GRNN mreža. Oba modela su testirana na parametrima sustava upravljanja i regulacije parnoturbinskog postrojenja, a u tu svrhu je korišten programski paket MATLAB 7.0.1.The identification and simulation results of dynamic and static operating systems significant...