AbstractBayesian variable selection often assumes normality, but the effects of model misspecification are not sufficiently understood. There are sound reasons behind this assumption, particularly for large p: ease of interpretation, analytical and computational convenience. More flexible frameworks exist, including semi- or non-parametric models, often at the cost of some tractability. We propose a simple extension that allows for skewness and thicker-than-normal tails but preserves tractability. It leads to easy interpretation and a log-concave likelihood that facilitates optimization and integration. We characterize asymptotically parameter estimation and Bayes factor rates, under certain model misspecification. Under suitable conditions...