This paper is concerned with the problem of designing a decentralized consensus protocol for platooning of non-identical vehicles in the presence of heterogeneous time-varying communication delays. The proposed control protocol makes use of a state feedback and to this aim drivetrain dynamics are modeled as third-order linear systems. Necessary and sufficient conditions for convergence and exponential stability, derived by using an appropriate Krasovskii functional, demonstrate the ability of the platoon in reaching the required regime with an exponentially bounded behavior. The proposed LMI-based approach allows to estimate both delay margin and decay rate. Moreover, convergence is proven under switching communication network topologies by...