Least square problem with l1 regularization has been proposed as a promising method for sparse signal reconstruction (e.g., basis pursuit de-noising and compressed sensing) and feature selection (e.g., the Lasso algorithm) in signal processing, statistics, and related fields. These problems can be cast as l1-regularized least-square program (LSP). In this paper, we propose a novel monotonic fixed point method to solve large-scale l1-regularized LSP. And we also prove the stability and convergence of the proposed method. Furthermore we generalize this method to least square matrix problem and apply it in nonnegative matrix factorization (NMF). The method is illustrated on sparse signal reconstruction, partner recognition and blind source sep...