Clique-width is a graph parameter that measures in a certain sense the complexity of a graph. Hard graph problems (e.g., problems expressible in monadic second-order logic with second-order quantification on vertex sets, which includes NP-hard problems such as 3-colorability) can be solved in polynomial time for graphs of bounded clique-width. We show that the clique-width of a given graph cannot be absolutely approximated in polynomial time unless P = NP. We also show that, given a graph G and an integer k, deciding whether the clique-width of G is at most k is NP-complete. This solves a problem that has been open since the introduction of clique-width in the early 1990s