Smooth tests of goodness of fit assess the fit of data to a given probability density function within a class of alternatives that differs ‘smoothly’ from the null model. These alternatives are characterized by their order: the greater the order the richer the class of alternatives. The order may be a specified constant, but data-driven methods use the data to select the order and give tests that are unlikely to miss important effects. When testing for distributions within exponential families the test statistic often has a very convenient form, being the sum of squares of components that are asymptotically independent and asymptotically standard normal. The number of components is strongly related to the order of the alternatives. If the d...