In this paper we present spectral algorithms for the solution of mesoscopic equations describing a broad class of pattern formation mechanisms, focusing on a prototypical system of surface processes. These models are in principle stochastic integrodifferential equations and are derived directly from microscopic lattice models, containing detailed information on particle–particle interactions and particle dynamics. The enhanced computational efficiency and accuracy of spectral methods versus finite difference methods are also described
Diverse scientific disciplines ranging from materials science to catalysis to biomolecular dynamics ...
A complete stochastic theory of relaxation is developed in terms of a homogeneous equation for the a...
Atoms on solid surfaces may self-assemble into ordered nanophases. The phase field method in combina...
In this paper we present spectral algorithms for the solution of mesoscopic equations describing a b...
We present a method for mesoscopic, dynamic Monte Carlo simulations of pattern formation in excitabl...
We present a method for mesoscopic, dynamic Monte Carlo simulations of pattern formation in excitabl...
In this thesis we derive deterministic and stochastic models that describe physical processes and th...
Using examples from surface science, we consider in article problems of non-equilibrium pattern form...
© Published under licence by IOP Publishing Ltd. The approach based on the stochastic algorithm of p...
I introduce two mesoscale algorithms, lattice Boltzmann and stochastic rotation dynamics, and show h...
AbstractIt is well known that reaction–diffusion systems describing Turing models can display very r...
A mesoscopic theory for diffusion of molecules interacting with a long-range potential is derived fo...
A new mathematical framework for modeling diffusion in nanoporous materials or on surfaces exhibits ...
Conventional manufacturing relies on robotics and chemistry to create, shape and combine components ...
A new mathematical framework is introduced for modeling diffusion in nanoporous materials or on surf...
Diverse scientific disciplines ranging from materials science to catalysis to biomolecular dynamics ...
A complete stochastic theory of relaxation is developed in terms of a homogeneous equation for the a...
Atoms on solid surfaces may self-assemble into ordered nanophases. The phase field method in combina...
In this paper we present spectral algorithms for the solution of mesoscopic equations describing a b...
We present a method for mesoscopic, dynamic Monte Carlo simulations of pattern formation in excitabl...
We present a method for mesoscopic, dynamic Monte Carlo simulations of pattern formation in excitabl...
In this thesis we derive deterministic and stochastic models that describe physical processes and th...
Using examples from surface science, we consider in article problems of non-equilibrium pattern form...
© Published under licence by IOP Publishing Ltd. The approach based on the stochastic algorithm of p...
I introduce two mesoscale algorithms, lattice Boltzmann and stochastic rotation dynamics, and show h...
AbstractIt is well known that reaction–diffusion systems describing Turing models can display very r...
A mesoscopic theory for diffusion of molecules interacting with a long-range potential is derived fo...
A new mathematical framework for modeling diffusion in nanoporous materials or on surfaces exhibits ...
Conventional manufacturing relies on robotics and chemistry to create, shape and combine components ...
A new mathematical framework is introduced for modeling diffusion in nanoporous materials or on surf...
Diverse scientific disciplines ranging from materials science to catalysis to biomolecular dynamics ...
A complete stochastic theory of relaxation is developed in terms of a homogeneous equation for the a...
Atoms on solid surfaces may self-assemble into ordered nanophases. The phase field method in combina...