Humans exploit dynamics—gravity, inertia, joint coupling, elasticity, and so on—as a regular part of skillful, coordinated movements. Such movements comprise everyday activities, like reaching and walking, as well as highly practiced maneuvers as used in athletics and the performing arts. Robots, especially industrial manipulators, instead use control schemes that ordinarily cancel the complex, nonlinear dynamics that humans use to their advantage. Alternative schemes from the machine learning and intelligent control communities offer a number of potential benefits, such as improved efficiency, online skill acquisition, and tracking of nonstationary environments. However, the success of such methods depends a great deal on structure in the ...