We show that stochastic annealing can be successfully applied to gain new results on the probabilistic traveling salesman problem. The probabilistic "traveling salesman" must decide on an a priori order in which to visit n cities (randomly distributed over a unit square) before learning that some cities can be omitted. We find the optimized average length of the pruned tour follows E((L) over bar (pruned))=rootnp(0.872-0.105p)f(np), where p is the probability of a city needing to be visited, and f(np)-->1 as np-->infinity. The average length of the a priori tour (before omitting any cities) is found to follow E(L-a priori)=rootn/pbeta(p), where beta(p)=1/[1.25-0.82 ln(p)] is measured for 0.05less than or equal topless than or equal to0.6. S...