Copulas enable to specify multivariate distributions with given marginals. Various parametric proposals were made in the literature for these quantities, mainly in the bivariate case. They can be systematically derived from multivariate distributions with known marginals, yielding e.g. the normal and the Student copulas. Alternatively, one can restrict his/her interest to a sub-family of copulas named Archimedean. They are characterized by a strictly decreasing convex function on (0, 1) which tends to +infinity at 0 (when strict) and which is 0 at 1. A ratio approximation of the generator and of its first derivative using B-splines is proposed and the associated parameters estimated using Markov chains Monte Carlo methods. The estimation is...