Gradient elastic flexural Kirchhoff plates under static loading are considered. Their governing equation of equilibrium in terms of their lateral deflection is a sixth order partial differential equation instead of the fourth order one for the classical case. A variational formulation of the problem is established with the aid of the principle of virtual work and used to determine all possible boundary conditions, classical and non-classical ones. Two circular gradient elastic plates, clamped or simply supported at their boundaries, are analyzed analytically and the gradient effect on their static response is assessed in detail. A rectangular gradient elastic plate, simply supported at its boundaries, is also analyzed analytically and its r...