This paper presents an artificial intelligence approach integrated with geographical information systems (GISs) for modeling urban evolution. Fuzzy logic and neural networks are used to provide a synthetic spatiotemporal methodology for the analysis, prediction and interpretation of urban growth. The proposed urban model takes into account the changes over time in population and building use patterns. A GIS is used for handling the spatial and temporal data, performing contingency analysis and mapping the results. Spatial entities with similar characteristics are grouped together in clusters by the use of a fuzzy c-means algorithm. Each cluster represents a specific level of urban growth and development. A two-layer feed-forward multilayer ...