We obtain the conditional fault diameter of the k-ary n-cube interconnection network. It has been previously shown that under the condition of forbidden faulty sets (i.e. assuming each non-faulty node has at least one non-faulty neighbor), the k-ary n-cube, whose connectivity is 2n, can tolerate up to 4n-3 faulty nodes without becoming disconnected. We extend this result by showing that the conditional fault-diameter of the k-ary n-cube is equal to the fault-free diameter plus two. This means that if there are at most 4n-3 faulty nodes in the k-ary n-cube and if every non-faulty node has at least one non-faulty neighbor, then there exists a fault-free path of length at most the diameter plus two between any two non faulty nodes. We also sho...