The oldest and best known grading on a (semisimple) Lie algebra is the root space decomposition with respect to a maximal torus. This is a grading by a free abelian group (the root lattice) and it is \emph{fine} in the sense that it cannot be refined. In general, there is a bijective correspondence between fine gradings by abelian groups on any finite-dimensional algebra over an algebraically closed field $\mathbb{F}$ of characteristic zero and maximal abelian diagonalizable subgroups (known as \emph{MAD-subgroups}) of the automorphism group of the algebra. This has been one of the approaches to finding all fine gradings on simple (finite-dimensional) Lie algebras over $\mathbb{F}$, which is an important problem concerning Lie algebras. The...