This paper addresses the problem of cooperative manipulation of a single object by N robotic agents under local goal specifications given as Metric Interval Temporal Logic (MITL) formulas. In particular, we propose a distributed model-free control protocol for the trajectory tracking of the cooperatively manipulated object without necessitating feedback of the contact forces/torques or inter-agent communication. This allows us to abstract the motion of the coupled object-agents system as a finite transition system and, by employing standard automata-based methodologies, we derive a hybrid control algorithm for the satisfaction of a given MITL formula. In addition, we use load sharing coefficients to represent potential differences in power ...