A lot of today's data is generated incrementally over time by a large variety of producers. This data ranges from quantitative sensor observations produced by robot systems to complex unstructured human-generated texts on social media. With data being so abundant, making sense of these streams of data through reasoning is challenging. Reasoning over streams is particularly relevant for autonomous robotic systems that operate in a physical environment. They commonly observe this environment through incremental observations, gradually refining information about their surroundings. This makes robust management of streaming data and its refinement an important problem. Many contemporary approaches to stream reasoning focus on the issue of query...