This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) and the Expectation-Maximization algorithm (EM) under hidden Markov models having a Markov dependence structure of order grater than one in the unobserved component signal. Firstly, we begin with a brief description of the theoretical basis of both statistical concepts through Chapters 1 and 2 that are devoted. In a second hand, we focus on the simultaneous implementation of both concepts in Chapter 3 in the usual setting where the dependence structure is of order 1.The contribution of SMC methods in this work lies in their ability to effectively approximate any bounded conditional functional in particular, those of filtering and smoothing quan...
Lorsqu’une grandeur d’intérêt ne peut être directement mesurée, il est fréquent de procéder à l’obse...
For almost any type of financial modelling exercise, the most fundamental problem is findingsuitablest...
This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in e...
This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) an...
This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) an...
Ce travail de thèse poursuit une perspective double dans l'usage conjoint des méthodes de Monte Carl...
Hidden Markov chain models or more generally Feynman-Kac models are now widely used. They allow the ...
Les modèles de chaînes de Markov cachées ou plus généralement ceux de Feynman-Kac sont aujourd'hui t...
The thesis introduces simulation techniques that are based on particle methods and it consists of tw...
This thesis concerns estimation in partially observed continuous and discrete time Markov models and...
Les travaux présentés dans cette thèse portent sur l'analyse et l'application de méthodes de Monte C...
Les méthodes de Monte Carlo sont des méthodes probabilistes qui utilisent des ordinateurs pour résou...
Monte Carlo methods are used for stochastic systems simulations. Sequential Monte Carlo methods take...
International audienceWe study the class of state-space models (or hidden Markov models) and perform...
This document is dedicated to inference problems in hidden Markov models. The first part is devoted ...
Lorsqu’une grandeur d’intérêt ne peut être directement mesurée, il est fréquent de procéder à l’obse...
For almost any type of financial modelling exercise, the most fundamental problem is findingsuitablest...
This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in e...
This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) an...
This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) an...
Ce travail de thèse poursuit une perspective double dans l'usage conjoint des méthodes de Monte Carl...
Hidden Markov chain models or more generally Feynman-Kac models are now widely used. They allow the ...
Les modèles de chaînes de Markov cachées ou plus généralement ceux de Feynman-Kac sont aujourd'hui t...
The thesis introduces simulation techniques that are based on particle methods and it consists of tw...
This thesis concerns estimation in partially observed continuous and discrete time Markov models and...
Les travaux présentés dans cette thèse portent sur l'analyse et l'application de méthodes de Monte C...
Les méthodes de Monte Carlo sont des méthodes probabilistes qui utilisent des ordinateurs pour résou...
Monte Carlo methods are used for stochastic systems simulations. Sequential Monte Carlo methods take...
International audienceWe study the class of state-space models (or hidden Markov models) and perform...
This document is dedicated to inference problems in hidden Markov models. The first part is devoted ...
Lorsqu’une grandeur d’intérêt ne peut être directement mesurée, il est fréquent de procéder à l’obse...
For almost any type of financial modelling exercise, the most fundamental problem is findingsuitablest...
This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in e...