In 1813, J. Poncelet proved his beautiful theorem in projective geometry, Poncelet's Closure Theorem, which states that: if C and D are two smooth conics in general position, and there is an n-gon inscribed in C and circumscribed around D, then for any point of C, there exists an n-gon, also inscribed in C and circumscribed around D, which has this point for one of its vertices.There are some formulae related to Poncelet's Theorem, in which introduce relations between two circles' data (their radii and the distance between their centres), when there is a bicentric n-gon between them. In Euclidean geometry, for example, we have Chapple's and Fuss's Formulae.We introduce a proof that Poncelet's Theorem holds in hyperbolic geometry. Also, we p...