In this paper, parallel extensions of a complete symmetric eigensolver, proposed by Yau and Lu in 1993, are pre sented. First, an overview of this invariant subspace decomposition method for dense symmetric matrices is given, followed by numerical results. Then, works are exposed in progress on distributed-memory implementa tion. The algorithm's heavy reliance on matrix-matrix mul tiplication, coupled with Fast Fourier Transform (FFT), should yield a highly parallelizable algorithm. Finally, performance results for the dominant computation kernel on the Intel Paragon are presented
We discuss timing and performance modeling of a routine to find all the eigenvalues and eigenvectors...
As part of the Fujitsu-ANU Parallel Mathematical Subroutine Library Project we have developed a suit...
AbstractSolving dense symmetric eigenvalue problems and computing singular value decompositions cont...
In this paper, we present preliminary results on a complete eigensolver based on the Yau and Lu meth...
. In this paper, we present preliminary results on a complete eigensolver based on the Yau and Lu me...
The goal of the PRISM project is the development of infrastructure and algorithms for the parallel s...
Abstract. In this paper, we present preliminary results on a complet.e eigensolver based on the Yau ...
. We give an overview of the Invariant Subspace Decomposition Algorithm for dense symmetric matrices...
We present a new parallel implementation of a divide and conquer algorithm for computing the spectra...
Abstract. We present a new parallel implementation of a divide and conquer algorithm for computing t...
textThis thesis demonstrates an efficient parallel method of solving the generalized eigenvalue prob...
A parallel algorithm for the calculation of the p leftmost eigenpairs of large, sparse F.E.M. matric...
textThis thesis demonstrates an efficient parallel method of solving the generalized eigenvalue prob...
A parallel algorithm for the calculation of the p leftmost eigenpairs of large, sparse F.E.M. matric...
An efficient parallel algorithm, farmzeroinNR, for the eigenvalue problem of a symmetric tridiagonal...
We discuss timing and performance modeling of a routine to find all the eigenvalues and eigenvectors...
As part of the Fujitsu-ANU Parallel Mathematical Subroutine Library Project we have developed a suit...
AbstractSolving dense symmetric eigenvalue problems and computing singular value decompositions cont...
In this paper, we present preliminary results on a complete eigensolver based on the Yau and Lu meth...
. In this paper, we present preliminary results on a complete eigensolver based on the Yau and Lu me...
The goal of the PRISM project is the development of infrastructure and algorithms for the parallel s...
Abstract. In this paper, we present preliminary results on a complet.e eigensolver based on the Yau ...
. We give an overview of the Invariant Subspace Decomposition Algorithm for dense symmetric matrices...
We present a new parallel implementation of a divide and conquer algorithm for computing the spectra...
Abstract. We present a new parallel implementation of a divide and conquer algorithm for computing t...
textThis thesis demonstrates an efficient parallel method of solving the generalized eigenvalue prob...
A parallel algorithm for the calculation of the p leftmost eigenpairs of large, sparse F.E.M. matric...
textThis thesis demonstrates an efficient parallel method of solving the generalized eigenvalue prob...
A parallel algorithm for the calculation of the p leftmost eigenpairs of large, sparse F.E.M. matric...
An efficient parallel algorithm, farmzeroinNR, for the eigenvalue problem of a symmetric tridiagonal...
We discuss timing and performance modeling of a routine to find all the eigenvalues and eigenvectors...
As part of the Fujitsu-ANU Parallel Mathematical Subroutine Library Project we have developed a suit...
AbstractSolving dense symmetric eigenvalue problems and computing singular value decompositions cont...