We describe a method for finding the families of relative equilibria of molecules that bifurcate from an equilibrium point as the angular momentum is increased from 0. Relative equilibria are steady rotations about a stationary axis during which the shape of the molecule remains constant.We show that the bifurcating families correspond bijectively to the critical points of a function h on the two-sphere which is invariant under an action of the symmetry group of the equilibrium point. From this it follows that for each rotation axis of the equilibrium configuration there is a bifurcating family of relative equilibria for which the molecule rotates about that axis. In addition, for each reflection plane there is a family of relative equilibr...