International audienceThe Analog Data Assimilation (AnDA) is a recently introduced data-driven methods for data assimilation where the dynamical model is learned from data, contrary to classical data assimilation where a physical model of the dynamics is needed. AnDA relies on replacing the physical dynamical model by a statistical emulator of the dynamics using analog forecasting methods. Then, the analog dynamical model is incorporated in ensemble-based data assimilation algorithms (Ensemble Kalman Filter and Smoother or Particle Filter). The relevance of the proposed AnDA is demonstrated for Lorenz-63 and Lorenz-96 chaotic dynamics. Applications in meteorology and oceanography as well as potential perspectives that are worthy of investig...