Thermoelectric (TE) materials have promising energy-related applications, including waste heat recovery to improve energy efficiency in automobiles and industrial processes, energy harvesting to power remote sensors and devices, and power generation in radioactive environments like nuclear plants and space. Despite tremendous progress in TE material efficiency over the past few decades, the lack of effective TE property characterization methods and TE system design models remain two outstanding challenges in TE research. This thesis focuses on two important topics to address these challenges: (1) microscale characterization of TE material properties and (2) design and simulation of TE generators for waste heat recovery. Scanning thermal mic...