In dieser Arbeit betrachten wir zwei Soft-Clustering Methoden: Fuzzy K-Means Clustering und modellbasiertes Clustering mittels Gaußmixturen. Im Gegensatz zum populären K-Means Clustering gibt es für diese beiden Ansätze kaum Algorithmen, die Garantien für die Güte der berechneten Clusterings bieten. Im ersten Teil der Arbeit präsentieren wir die allerersten Approximationsalgorithmen für das Fuzzy K-Means Problem: Wir zeigen, dass die sogenannte Superset-Sampling Technik auf das Fuzzy K-Means Problem angewendet werden kann. Darüber hinaus zeigen wir, dass sich eine Kernmenge für das Fuzzy K-Means Problem berechnen lässt. Wir nutzen diese Kernmengen-Konstruktion auch, um einen weiteren Approximationsalgorithmus für das Fuzzy K-Means Problem h...
The Fuzzy clustering (FC) problem is a non-convex mathematical program which usually possesses sever...
Mengembangkan wilayah untuk mengurangi kesenjangan dan menjamin pemerataan merupakan salah satu dari...
Two new algorithms for fuzzy clustering are presented. Convergence of the proposed algorithms is pro...
Clustering is one of the most used tools in data analysis. In the last decades, due to the increasin...
Clustering is one of the most widely used approaches in data mining with real life applications in v...
Artículo de publicación ISIClustering is one of the most widely used approaches in data mining with ...
We investigate here the behavior of the standard k-means clustering algorithm and several alternativ...
Despite the huge success of machine learning methods in the last decade, a crucial issue is to contr...
Two new algorithms for fuzzy clustering are presented. Convergence of the proposed algorithms is pro...
In this work, we examine three softcomputing methodologies, i.e. rule based fuzzy classification sys...
The advantages of soft c-means over its hard and fuzzy versions render it more attractive to use in ...
Šis darbs ir veltīts piecām klasterizācijas metodēm: K-vidējo klasterizācijas algoritms, C-vidējo ne...
In present time many clustering techniques are use the data mining. The clustering gives the best pe...
Clustering is the process of partitioning or grouping a given set of patterns into disjoint clusters...
Clustering is a technique that groups observations in a dataset based on the distance to the centre ...
The Fuzzy clustering (FC) problem is a non-convex mathematical program which usually possesses sever...
Mengembangkan wilayah untuk mengurangi kesenjangan dan menjamin pemerataan merupakan salah satu dari...
Two new algorithms for fuzzy clustering are presented. Convergence of the proposed algorithms is pro...
Clustering is one of the most used tools in data analysis. In the last decades, due to the increasin...
Clustering is one of the most widely used approaches in data mining with real life applications in v...
Artículo de publicación ISIClustering is one of the most widely used approaches in data mining with ...
We investigate here the behavior of the standard k-means clustering algorithm and several alternativ...
Despite the huge success of machine learning methods in the last decade, a crucial issue is to contr...
Two new algorithms for fuzzy clustering are presented. Convergence of the proposed algorithms is pro...
In this work, we examine three softcomputing methodologies, i.e. rule based fuzzy classification sys...
The advantages of soft c-means over its hard and fuzzy versions render it more attractive to use in ...
Šis darbs ir veltīts piecām klasterizācijas metodēm: K-vidējo klasterizācijas algoritms, C-vidējo ne...
In present time many clustering techniques are use the data mining. The clustering gives the best pe...
Clustering is the process of partitioning or grouping a given set of patterns into disjoint clusters...
Clustering is a technique that groups observations in a dataset based on the distance to the centre ...
The Fuzzy clustering (FC) problem is a non-convex mathematical program which usually possesses sever...
Mengembangkan wilayah untuk mengurangi kesenjangan dan menjamin pemerataan merupakan salah satu dari...
Two new algorithms for fuzzy clustering are presented. Convergence of the proposed algorithms is pro...