International audienceMulti-FPGA platforms are very popular today for pre-silicon verification of complex designs due to their low cost and high speed. The idea is to divide these systems into smaller subsystems and implement each one on a separate chip. The challenge is that the number of IOs available on FPGA remains constant despite the technological evolution. This problem is resolved by multiplexing several cut-signals using the time division multiplexing scheduling mechanism. This structure has a strong effect on the speed of transmission between FPGAs. However, an inter-FPGA bottleneck appears. In this paper, we focus on evaluating the Network-on-Chip on multi-FPGA using the high speed serial transceiver GTX block. In order to speed ...