summary:Let $S$ be topological semigroup, we consider an appropriate semigroup compactification $\widehat{S}$ of $S$. In this paper we study the connection between subgroups of a maximal group in a minimal left ideal of $\widehat{S}$, which arise as equivalence classes of some closed left congruence, and the minimal flow characterized by the left congruence. A particular topology is defined on a maximal group and it is shown that a closed subgroup under this topology is precisely the intersection of an equivalence class with the maximal group for some left congruence on $\widehat{S}$
Abstract. Every topological group G has some natural compactifica-tions which can be a useful tool o...
Let G be a locally compact group and let Sub(G) denote the compact space of closed subgroups of G. G...
Abstract. We deal with a-minimal sets instead of minimal right ideals of the enveloping semigroup an...
Let S be topological semigroup, we consider an appropriate semigroup compactification Ŝ of S. In thi...
summary:Let $S$ be topological semigroup, we consider an appropriate semigroup compactification $\...
summary:Let $S$ be topological semigroup, we consider an appropriate semigroup compactification $\...
Abstract. The classical theory of dynamical systems arose in the context of the study of differentia...
In this paper we study functorial connections between flows and semigroup compactifications of the p...
AbstractIn this paper we study connections between flows and left congruences on the universal flow....
. In this paper we characterize the universal pointed actions of a semigroup S on a compact space su...
In this paper we study connections between flows and left congruences on the universal flow. It is s...
Given a group $X$ we study the algebraic structure of the compact right-topological semigroup $G(X)$...
Tso Kai-sing.Thesis (M.Phil.)--Chinese University of Hong Kong.Bibliography: leaves 32
AbstractThis paper is concerned with the description of almost automorphic symbolic minimal flows in...
Given a group $X$ we study the algebraic structure of the compactright-topological semigroup $G(X)$ ...
Abstract. Every topological group G has some natural compactifica-tions which can be a useful tool o...
Let G be a locally compact group and let Sub(G) denote the compact space of closed subgroups of G. G...
Abstract. We deal with a-minimal sets instead of minimal right ideals of the enveloping semigroup an...
Let S be topological semigroup, we consider an appropriate semigroup compactification Ŝ of S. In thi...
summary:Let $S$ be topological semigroup, we consider an appropriate semigroup compactification $\...
summary:Let $S$ be topological semigroup, we consider an appropriate semigroup compactification $\...
Abstract. The classical theory of dynamical systems arose in the context of the study of differentia...
In this paper we study functorial connections between flows and semigroup compactifications of the p...
AbstractIn this paper we study connections between flows and left congruences on the universal flow....
. In this paper we characterize the universal pointed actions of a semigroup S on a compact space su...
In this paper we study connections between flows and left congruences on the universal flow. It is s...
Given a group $X$ we study the algebraic structure of the compact right-topological semigroup $G(X)$...
Tso Kai-sing.Thesis (M.Phil.)--Chinese University of Hong Kong.Bibliography: leaves 32
AbstractThis paper is concerned with the description of almost automorphic symbolic minimal flows in...
Given a group $X$ we study the algebraic structure of the compactright-topological semigroup $G(X)$ ...
Abstract. Every topological group G has some natural compactifica-tions which can be a useful tool o...
Let G be a locally compact group and let Sub(G) denote the compact space of closed subgroups of G. G...
Abstract. We deal with a-minimal sets instead of minimal right ideals of the enveloping semigroup an...