summary:An orthomodular lattice $L$ is said to be interval homogeneous (resp. centrally interval homogeneous) if it is $\sigma$-complete and satisfies the following property: Whenever $L$ is isomorphic to an interval, $[a,b]$, in $L$ then $L$ is isomorphic to each interval $[c,d]$ with $c\leq a$ and $d\geq b$ (resp. the same condition as above only under the assumption that all elements $a$, $b$, $c$, $d$ are central in $L$). Let us denote by Inthom (resp. Inthom$_c$) the class of all interval homogeneous orthomodular lattices (resp. centrally interval homogeneous orthomodular lattices). We first show that the class Inthom is considerably large — it contains any Boolean $\sigma$-algebra, any block-finite $\sigma$-complete orthomodular latti...