summary:We investigate a $H$-invariant linear code $C$ over the finite field $F_{p}$ where $H$ is a group of linear transformations. We show that if $H$ is a noncyclic abelian group and $(\vert {H}\vert ,p)=1$, then the code $C$ is the sum of the centralizer codes $C_{c}(h)$ where $h$ is a nonidentity element of $H$. Moreover if $A$ is subgroup of $H$ such that $A\cong Z_{q} \times Z_{q}$, $q\ne p$, then dim $C$ is known when the dimension of $C_{c}(K)$ is known for each subgroup $K\ne 1$ of $A$. In the last few sections we restrict our scope of investigation to a special class of invariant codes, namely affine codes and their centralizers. New results concerning the dimensions of these codes and their centralizers are obtained
It is well known that cyclic codes are very useful because of their applications, since they are not...
A constant dimension code consists of a set of k-dimensional subspaces of Fnq, where Fq is a finite ...
Codes over $F_{qm}$ that form vector spaces over $F_q$ are called $F_q$-linear codes over $F_{qm}$. ...
Abstract. We investigate a H-invariant linear code C over the nite eld Fp where H is a group of line...
AbstractA group code structure of a linear code is a description of the code as one-sided or two-sid...
Abstract. A (left) group code of length n is a linear code which is the image of a (left) ideal of a...
For systematic codes over finite fields the following result is well known: If [I¦P] is the generato...
Abstract- Algebraic structure of codes closed un-der a rb i t r a ry abelian group G of permutat ion...
Algebraic structure of codes over F<sub>q</sub>, closed under arbitrary abelian group G of permutati...
For group codes over elementary Abelian groups we present definitions of the generator and the parit...
We obtain structural results about group ring codes over F[G], where F is a finite field of characte...
The dual code of a linear code over an abelian group is characterized in terms of the endomorphisms ...
Let Q be a simple algebraic group of type A or C over a field of good positive characteristic. Let...
This work is an attempt to explain in some detail section III D of the paper: N.J.A. Sloane. "Error-...
We consider linear representations of a finite group G on a finite dimensional vector space over a f...
It is well known that cyclic codes are very useful because of their applications, since they are not...
A constant dimension code consists of a set of k-dimensional subspaces of Fnq, where Fq is a finite ...
Codes over $F_{qm}$ that form vector spaces over $F_q$ are called $F_q$-linear codes over $F_{qm}$. ...
Abstract. We investigate a H-invariant linear code C over the nite eld Fp where H is a group of line...
AbstractA group code structure of a linear code is a description of the code as one-sided or two-sid...
Abstract. A (left) group code of length n is a linear code which is the image of a (left) ideal of a...
For systematic codes over finite fields the following result is well known: If [I¦P] is the generato...
Abstract- Algebraic structure of codes closed un-der a rb i t r a ry abelian group G of permutat ion...
Algebraic structure of codes over F<sub>q</sub>, closed under arbitrary abelian group G of permutati...
For group codes over elementary Abelian groups we present definitions of the generator and the parit...
We obtain structural results about group ring codes over F[G], where F is a finite field of characte...
The dual code of a linear code over an abelian group is characterized in terms of the endomorphisms ...
Let Q be a simple algebraic group of type A or C over a field of good positive characteristic. Let...
This work is an attempt to explain in some detail section III D of the paper: N.J.A. Sloane. "Error-...
We consider linear representations of a finite group G on a finite dimensional vector space over a f...
It is well known that cyclic codes are very useful because of their applications, since they are not...
A constant dimension code consists of a set of k-dimensional subspaces of Fnq, where Fq is a finite ...
Codes over $F_{qm}$ that form vector spaces over $F_q$ are called $F_q$-linear codes over $F_{qm}$. ...