Copyright © 2007 IEEEUnlike other tracking algorithms the probabilistic multi-hypothesis tracker (PMHT) assumes that the true source of each measurement is an independent realisation of a random process. Given knowledge of the prior probability of this assignment variable, data association is performed independently for each measurement. When the assignment prior is unknown, it can be estimated provided that it is either time independent, or fixed over the batch. This paper presents a new extension of the PMHT, which incorporates a randomly evolving Bayesian hyperparameter for the assignment process. This extension is referred to as the PMHT with hysteresis. The state of the hyperparameter reflects each model's contribution to the mixture, ...