Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support VectorMachine (SVM) to estimate default probabilities of German firms. Our analysis is based on the Creditreform database. The results reveal that the most important eight predictors related to bankruptcy for these German firms belong to the ratios of activity, profitability, liquidity, leverage and the percentage of incremental inventories. Basedon the performance measures, the SVM tool can predict a firms default risk and identify the insolvent firm more accurately than the ben...