Dynamik auf Netzwerken ist ein mathematisches Feld, das in den letzten Jahrzehnten schnell gewachsen ist und Anwendungen in zahlreichen Disziplinen wie z.B. Physik, Biologie und Soziologie findet. Die Funktion vieler Netzwerke hängt von der Fähigkeit ab, die Elemente des Netzwerkes zu synchronisieren. Mit anderen Worten, die Existenz und die transversale Stabilität der synchronen Mannigfaltigkeit sind zentrale Eigenschaften. Erst seit einigen Jahren wird versucht, den verwickelten Zusammenhang zwischen der Kopplungsstruktur und den Stabilitätseigenschaften synchroner Zustände zu verstehen. Genau das ist das zentrale Thema dieser Arbeit. Zunächst präsentiere ich erste Ergebnisse zur Klassifizierung der Kanten eines gerichteten Netzwerks bezü...