A broad class of inductive logics that includes the probability calculus is defined by the conditions that the inductive strengths [A{pipe}B] are defined fully in terms of deductive relations in preferred partitions and that they are asymptotically stable. Inductive independence is shown to be generic for propositions in such logics; a notion of a scale-free inductive logic is identified; and a limit theorem is derived. If the presence of preferred partitions is not presumed, no inductive logic is definable. This no-go result precludes many possible inductive logics, including versions of hypothetico-deductivism. © 2010 Springer Science+Business Media B.V