In this paper we consider the stabilization of hybrid systems with both continuous and discrete dynamics via predictive control. To deal with the presence of discrete dynamics we adopt a “hybrid” control Lyapunov function approach, which consists of using two different functions. A Lyapunov-like function is designed to ensure finite-time convergence of the discrete state to a target value, while asymptotic stability of the continuous state is guaranteed via a classical local control Lyapunov function. We show that by combining these two functions in a proper manner it is no longer necessary that the control Lyapunov function for the continuous dynamics decreases at each time step. This leads to a significant reduction of conservativeness i...