We study the functorial characterisation of bisimulation-based equivalences over a categorical model of labelled trees. We show that in a setting where all labels are visible, strong bisimilarity can be characterised in terms of enriched functors by relying on the reflection of paths with their factorisations. For an enriched functor F, this notion requires that a path (an internal morphism in our framework) π going from F(A) to C corresponds to a path p going from A to K, with F(K) = C, such that every possible factorisation of π can be lifted in an appropriate factorisation of p. This last property corresponds to a Conduch´e property for enriched functors, and a very rigid formulation of it has been used by Lawvere to characterise...