Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to ...
The main object of this PhD. Thesis is the definition of new similarity measures for data sequences,...
The main object of this PhD. Thesis is the definition of new similarity measures for data sequences,...
Dam behaviour is difficult to predict with high accuracy. Numerical models for structural calculatio...
Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these t...
Clustering analysis is widely used to stratify data in the same cluster when they are similar accord...
In the field of data mining and unsupervised machine learning, data clustering is defined as the tas...
In the golden era of information, vast amounts of data are available to perform analysis on and ext...
[EN] El análisis de clusters tiene por objetivo dividir objetos de datos en grupos, de tal manera q...
Tesis inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departament...
Uno de los mayores desafíos a los que se enfrenta la ciencia actual es el de desentrañar el funciona...
Uno de los mayores desafíos a los que se enfrenta la ciencia actual es el de desentrañar el funciona...
Uno de los mayores desafíos a los que se enfrenta la ciencia actual es el de desentrañar el funciona...
En el \ue1mbito de la miner\ueda de datos y el aprendizaje de m\ue1quina no supervisado, la agrupaci...
Uno de los mayores desafíos a los que se enfrenta la ciencia actual es el de desentrañar el funciona...
The main object of this PhD. Thesis is the definition of new similarity measures for data sequences,...
The main object of this PhD. Thesis is the definition of new similarity measures for data sequences,...
The main object of this PhD. Thesis is the definition of new similarity measures for data sequences,...
Dam behaviour is difficult to predict with high accuracy. Numerical models for structural calculatio...
Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these t...
Clustering analysis is widely used to stratify data in the same cluster when they are similar accord...
In the field of data mining and unsupervised machine learning, data clustering is defined as the tas...
In the golden era of information, vast amounts of data are available to perform analysis on and ext...
[EN] El análisis de clusters tiene por objetivo dividir objetos de datos en grupos, de tal manera q...
Tesis inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departament...
Uno de los mayores desafíos a los que se enfrenta la ciencia actual es el de desentrañar el funciona...
Uno de los mayores desafíos a los que se enfrenta la ciencia actual es el de desentrañar el funciona...
Uno de los mayores desafíos a los que se enfrenta la ciencia actual es el de desentrañar el funciona...
En el \ue1mbito de la miner\ueda de datos y el aprendizaje de m\ue1quina no supervisado, la agrupaci...
Uno de los mayores desafíos a los que se enfrenta la ciencia actual es el de desentrañar el funciona...
The main object of this PhD. Thesis is the definition of new similarity measures for data sequences,...
The main object of this PhD. Thesis is the definition of new similarity measures for data sequences,...
The main object of this PhD. Thesis is the definition of new similarity measures for data sequences,...
Dam behaviour is difficult to predict with high accuracy. Numerical models for structural calculatio...