We present a numerical inversion method for generating random variates from continuous distributions when only the density function is given. The algorithm is based on polynomial interpolation of the inverse CDF and Gauss-Lobatto integration. The user can select the required precision which may be close to machine precision for smooth, bounded densities; the necessary tables have moderate size. Our computational experiments with the classical standard distributions (normal, beta, gamma, t-distributions) and with the noncentral chi-square, hyperbolic, generalized hyperbolic and stable distributions showed that our algorithm always reaches the required precision. The setup time is moderate and the marginal execution time is very fast and the ...