Polastri LetX be a projective variety of dimension r over an algebraically closed field. It is proven that two birational embeddings of X in Pn with n r + 2 are equivalent up to Cremona transformations of Pn
Our research interest has been in the birational classification of complex projective varieties usin...
complexes of OX-modules with coherent cohomologies. 1 To what extent does D(X) determine X. Biration...
Extending work of Meinhardt and Partsch, we prove that two varieties are isomorphic away from a subs...
Let X be a projective variety of dimension r. We want to understand when two birational embeddings ...
Two divisors in Pn are said to be Cremona equivalent if there is a Cremona modification sending one ...
It is proved that two cones are Cremona equivalent if and only if they are brationa
We look at algebraic embeddings of the Cremona group in $n$ variables $Cr_n(C)$ to the groups of bir...
Two birational subvarieties of Pn are called Cremona equivalent if there is a Cremona modification o...
International audienceWe classify all (abstract) homomorphisms from the group PGL(r+1)(C) to the gro...
AbstractOne proves a general characteristic-free criterion for a rational map between projective var...
We prove that any two embeddings Pd ∼ = Y � → X1, Pd ∼ = Y � → X2, d ≥ 3, in two n-folds projective ...
We look at algebraic embeddings of the Cremona group in n variables $Cr_n(\mathbb{C})$ to the groups...
We look at algebraic embeddings of the Cremona group in $n$ variables $Cr_n(C)$ to the groups of bir...
Let k be an algebraically closed field of characteristic p > 0. We give a birational characterizatio...
We prove that two algebraic embeddings of a smooth variety X in ℂm are the same up to a holomorphic ...
Our research interest has been in the birational classification of complex projective varieties usin...
complexes of OX-modules with coherent cohomologies. 1 To what extent does D(X) determine X. Biration...
Extending work of Meinhardt and Partsch, we prove that two varieties are isomorphic away from a subs...
Let X be a projective variety of dimension r. We want to understand when two birational embeddings ...
Two divisors in Pn are said to be Cremona equivalent if there is a Cremona modification sending one ...
It is proved that two cones are Cremona equivalent if and only if they are brationa
We look at algebraic embeddings of the Cremona group in $n$ variables $Cr_n(C)$ to the groups of bir...
Two birational subvarieties of Pn are called Cremona equivalent if there is a Cremona modification o...
International audienceWe classify all (abstract) homomorphisms from the group PGL(r+1)(C) to the gro...
AbstractOne proves a general characteristic-free criterion for a rational map between projective var...
We prove that any two embeddings Pd ∼ = Y � → X1, Pd ∼ = Y � → X2, d ≥ 3, in two n-folds projective ...
We look at algebraic embeddings of the Cremona group in n variables $Cr_n(\mathbb{C})$ to the groups...
We look at algebraic embeddings of the Cremona group in $n$ variables $Cr_n(C)$ to the groups of bir...
Let k be an algebraically closed field of characteristic p > 0. We give a birational characterizatio...
We prove that two algebraic embeddings of a smooth variety X in ℂm are the same up to a holomorphic ...
Our research interest has been in the birational classification of complex projective varieties usin...
complexes of OX-modules with coherent cohomologies. 1 To what extent does D(X) determine X. Biration...
Extending work of Meinhardt and Partsch, we prove that two varieties are isomorphic away from a subs...