We present here some results obtained with C. G\’erard about the Mourre theory for a class of operators which contains among other examples matrix valued differential operators with constant coefficients an periodic Schr\"odinger operators. We refer the reader to $[5, 4] $ for further details The framework is the one of a Hilbert space $\mathcal{H} $ equal to $L^{2}(M, \mu;\mathcal{H}’)=\int^{\oplus_{\mathcal{H}’d}}\mu(k)$ where $\mathcal{H}’ $ is a separable Hilbert space and $(M, \mu) $ is a a-finite measured space. In this framework, the fibered operators are the self-adjoint direct integrals of the form $H_{0} = \int^{\oplus}H\mathrm{o}(k)d\mu(k) $. The class of operators which we are interested in is characterized by the three con...
This PhD. thesis consists of theorems concerning the spectral theory of CMV and Schrödinger operator...
The primarily objective of the book is to serve as a primer on the theory of bounded linear operator...
This thesis is divided as follows: The first chapter introduces the main ideas intuitively while as...
AbstractWe develop in this paper the Mourre theory for an abstract class of fibered self-adjoint ope...
Dans cette thèse, nous nous intéressons à l’étude du spectre essentiel d’opérateurs de Schrödinger e...
We introduce a natural framework for dealing with Mourre theory in an abstract two-Hilbert spaces se...
We apply weighted Mourre commutator theory to prove the limiting absorption principle for the discre...
We present a variant of Mourre's commutator theory. We apply it to prove the limiting absorption pri...
In this thesis, we are interested in the study of the essential spectrum of Schrödinger operators an...
International audienceMourre's commutator theory is a powerful tool to study the continuous spectrum...
In this thesis, we are interested in the study of the essential spectrum of Schrödinger operators an...
We consider a 2D Schrödinger operator H0 with constant magnetic field defined on a strip of finite ...
AbstractWe show a Mourre estimate for a class of unbounded Jacobi matrices. In particular, we deduce...
In the first part of this paper we associate a C"*-algebra of pseudo-differential operators to ...
The band structure of a periodic Schroedinger operator is the common spectrum of this operator and t...
This PhD. thesis consists of theorems concerning the spectral theory of CMV and Schrödinger operator...
The primarily objective of the book is to serve as a primer on the theory of bounded linear operator...
This thesis is divided as follows: The first chapter introduces the main ideas intuitively while as...
AbstractWe develop in this paper the Mourre theory for an abstract class of fibered self-adjoint ope...
Dans cette thèse, nous nous intéressons à l’étude du spectre essentiel d’opérateurs de Schrödinger e...
We introduce a natural framework for dealing with Mourre theory in an abstract two-Hilbert spaces se...
We apply weighted Mourre commutator theory to prove the limiting absorption principle for the discre...
We present a variant of Mourre's commutator theory. We apply it to prove the limiting absorption pri...
In this thesis, we are interested in the study of the essential spectrum of Schrödinger operators an...
International audienceMourre's commutator theory is a powerful tool to study the continuous spectrum...
In this thesis, we are interested in the study of the essential spectrum of Schrödinger operators an...
We consider a 2D Schrödinger operator H0 with constant magnetic field defined on a strip of finite ...
AbstractWe show a Mourre estimate for a class of unbounded Jacobi matrices. In particular, we deduce...
In the first part of this paper we associate a C"*-algebra of pseudo-differential operators to ...
The band structure of a periodic Schroedinger operator is the common spectrum of this operator and t...
This PhD. thesis consists of theorems concerning the spectral theory of CMV and Schrödinger operator...
The primarily objective of the book is to serve as a primer on the theory of bounded linear operator...
This thesis is divided as follows: The first chapter introduces the main ideas intuitively while as...