Recently, the study of time series turned the attention to the ones having long memory property. The ARFIMA (p,d,q) model shows this property when the degree of differencing d is in the interval (0.0,0.5), range where the process is stationary. In this work, we analyze the estimation of the degree d' " in ARFIMA (p,d' ",q) processes when d ">0.5, that is, when the processes are non-stationary but still have the property of long memory. We present a simulation study for the estimators of d * with semi parametric and parametric methods and different sample sizes. The methodology is applied to the experimental data series of UK long interest gilts. Resumo Recentes estudos em Series Temporais tern dado atenc;ao aquel...
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (v...
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (v...
UnrestrictedThis dissertation focuses on the AR approximation of long memory processes and its appli...
Recently, the study of time series has been focused on time series having the long memory property, ...
Recently, the study of time series has been focused on time series having the long memory property, ...
The thesis deal with long-memory processes which are defined by several ways. The main concern is de...
Processes with correlated errors have been widely used in economic time series. The fractionally int...
International audienceThe assumption of linearity is implicitly accepted in the process which genera...
Fractionally integrated processes ARFIMA(p,d,q), introduced by Granger (1980) and Hosking (1981) ind...
For an autoregressive fractionally integrated moving-average ARFIMA(p, d, q) process, it is often a ...
For an autoregressive fractionally integrated moving-average ARFIMA(p, d, q) process, it is often a ...
Estudos recentes em séries temporais direcionam-se àquelas que apresentam característica de longa de...
L’hypothèse de linéarité est admise implicitement pour le processus générateur d’une chronique qui o...
Dans cette thèse, on considère deux types de processus longues mémoires : les processus stationnaire...
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (v...
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (v...
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (v...
UnrestrictedThis dissertation focuses on the AR approximation of long memory processes and its appli...
Recently, the study of time series has been focused on time series having the long memory property, ...
Recently, the study of time series has been focused on time series having the long memory property, ...
The thesis deal with long-memory processes which are defined by several ways. The main concern is de...
Processes with correlated errors have been widely used in economic time series. The fractionally int...
International audienceThe assumption of linearity is implicitly accepted in the process which genera...
Fractionally integrated processes ARFIMA(p,d,q), introduced by Granger (1980) and Hosking (1981) ind...
For an autoregressive fractionally integrated moving-average ARFIMA(p, d, q) process, it is often a ...
For an autoregressive fractionally integrated moving-average ARFIMA(p, d, q) process, it is often a ...
Estudos recentes em séries temporais direcionam-se àquelas que apresentam característica de longa de...
L’hypothèse de linéarité est admise implicitement pour le processus générateur d’une chronique qui o...
Dans cette thèse, on considère deux types de processus longues mémoires : les processus stationnaire...
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (v...
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (v...
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (v...
UnrestrictedThis dissertation focuses on the AR approximation of long memory processes and its appli...