We dedicate this paper to the memory of Ed Cline. Abstract Given a quasi-hereditary algebra B, we present conditions which guarantee that the algebra grB obtained by grading B by its radical filtration is Koszul and at the same time inherits the quasi-hereditary property and other good Lie-theoretic properties that B might possess. The method involves working with a pair (A, a) consisting of a quasi-hereditary algebra A and a (positively) graded subalgebra a. The algebra B arises as a quotient B = A/J of A by a defining ideal J of A. Along the way, we also show that the standard (Weyl) modules for B have a structure as graded modules for a. These results are applied to obtain new information about the finite dimensional algebras (e.g., the ...
We define generalized Koszul modules and rings and develop a generalized Koszul theory for $\mathbb{...
AbstractLet g be a semisimple Lie algebra and V a g-semisimple module. In this paper, we study the c...
xi, 95 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the lib...
University of Minnesota Ph.D. dissertation. August 2012. Major: Mathematics. Advisor: Liping Li. 1 c...
Koszul algebras have arisen in many contexts; algebraic geometry, combinatorics, Lie algebras, non-c...
Koszul algebras, introduced by Priddy, are positively graded K-algebras R whose residue fieldK has a...
Exceptional collections frequently arise in algebraic and symplectic geometry. Since the work of Bei...
Exceptional collections frequently arise in algebraic and symplectic geometry. Since the work of Bei...
© 2020 European Mathematical Society Publishing House. All rights reserved. A Hecke symmetry R on a ...
In this paper we use the Hecke algebra of type B to define a new algebra S which is an analogue of t...
In this thesis, we present a detailed exposition of Koszul algebras and Koszul duality. We begin wit...
We study new classes of quasi-hereditary and cellular algebras which generalize Turner\u27s double a...
AbstractLet g be a finite-dimensional simple Lie algebra and let Sg be the locally finite part of th...
For every positively graded algebra A, we show that its categories of linear complexes of projective...
Dlab V, Ringel CM. The module theoretical approach to quasi-hereditary algebras. In: Tachikawa H, Br...
We define generalized Koszul modules and rings and develop a generalized Koszul theory for $\mathbb{...
AbstractLet g be a semisimple Lie algebra and V a g-semisimple module. In this paper, we study the c...
xi, 95 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the lib...
University of Minnesota Ph.D. dissertation. August 2012. Major: Mathematics. Advisor: Liping Li. 1 c...
Koszul algebras have arisen in many contexts; algebraic geometry, combinatorics, Lie algebras, non-c...
Koszul algebras, introduced by Priddy, are positively graded K-algebras R whose residue fieldK has a...
Exceptional collections frequently arise in algebraic and symplectic geometry. Since the work of Bei...
Exceptional collections frequently arise in algebraic and symplectic geometry. Since the work of Bei...
© 2020 European Mathematical Society Publishing House. All rights reserved. A Hecke symmetry R on a ...
In this paper we use the Hecke algebra of type B to define a new algebra S which is an analogue of t...
In this thesis, we present a detailed exposition of Koszul algebras and Koszul duality. We begin wit...
We study new classes of quasi-hereditary and cellular algebras which generalize Turner\u27s double a...
AbstractLet g be a finite-dimensional simple Lie algebra and let Sg be the locally finite part of th...
For every positively graded algebra A, we show that its categories of linear complexes of projective...
Dlab V, Ringel CM. The module theoretical approach to quasi-hereditary algebras. In: Tachikawa H, Br...
We define generalized Koszul modules and rings and develop a generalized Koszul theory for $\mathbb{...
AbstractLet g be a semisimple Lie algebra and V a g-semisimple module. In this paper, we study the c...
xi, 95 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the lib...