Abstract: In this paper we highlight some analytical and numerical discussion of Hopf bifurcation for the nonlinear two-dimensional chaotic map in the plane 22:f given by),(),( 22 yxybxyxbxayxf where the adjustable parameters.,ba Here we firstly show that if the nonlinear map f undergoes supercritical Hopf bifurcation, then 2f undergoes subcritical Hopf bifurcation. Secondly, we show that our numerical and graphical investigations have established some fascinating observation between Hopf bifurcation and Period-doubling bifurcation
AbstractIn this paper, we show the combined use of analytical and numerical techniques in the study ...
We consider the effect of discrete-time signal or periodically pulsed forcing on chaotic dynamical s...
We investigate the KdV-Burgers and Gardner equations with dissipation and external perturbation term...
In order to understand the onset of hyperchaotic behavior recently observed in many systems, we stud...
In order to understand the onset of hyperchaotic behavior recently observed in many systems, we stud...
We discuss the post-bifurcation dynamics of the general double Hopf normal form, which allows us to ...
We discuss the post-bifurcation dynamics of the general double Hopf normal form, which allows us to ...
In this paper, we study the effects of periodic perturbations on a smooth nonlinear system possessin...
In this paper, a new one-dimensional map is introduced, which exhibits chaotic behavior in small int...
Discrete models of density-dependent population growth provide simpleexamples of dynamical systems w...
Abstract: This paper introduces a two-dimensional, C ∞ discrete bounded map capable of generating ”m...
Although continuous systems such as the Chua circuit are known as systems with hidden attractors, hi...
Dynamical phenomena are studied near a Hopf-saddle-node bifurcation of fixed points of 3D-diffeomorp...
Division of the parameter plane for the two-dimensional Hénon mapping into domains of periodic and c...
Recently, several discrete nonlinear growth models with complicated dynamical behavior have been int...
AbstractIn this paper, we show the combined use of analytical and numerical techniques in the study ...
We consider the effect of discrete-time signal or periodically pulsed forcing on chaotic dynamical s...
We investigate the KdV-Burgers and Gardner equations with dissipation and external perturbation term...
In order to understand the onset of hyperchaotic behavior recently observed in many systems, we stud...
In order to understand the onset of hyperchaotic behavior recently observed in many systems, we stud...
We discuss the post-bifurcation dynamics of the general double Hopf normal form, which allows us to ...
We discuss the post-bifurcation dynamics of the general double Hopf normal form, which allows us to ...
In this paper, we study the effects of periodic perturbations on a smooth nonlinear system possessin...
In this paper, a new one-dimensional map is introduced, which exhibits chaotic behavior in small int...
Discrete models of density-dependent population growth provide simpleexamples of dynamical systems w...
Abstract: This paper introduces a two-dimensional, C ∞ discrete bounded map capable of generating ”m...
Although continuous systems such as the Chua circuit are known as systems with hidden attractors, hi...
Dynamical phenomena are studied near a Hopf-saddle-node bifurcation of fixed points of 3D-diffeomorp...
Division of the parameter plane for the two-dimensional Hénon mapping into domains of periodic and c...
Recently, several discrete nonlinear growth models with complicated dynamical behavior have been int...
AbstractIn this paper, we show the combined use of analytical and numerical techniques in the study ...
We consider the effect of discrete-time signal or periodically pulsed forcing on chaotic dynamical s...
We investigate the KdV-Burgers and Gardner equations with dissipation and external perturbation term...