A note about the cyclotomic polynomial pg ()and some related results ZHU Feng—xiang QI Wen-feng Abstract.The expression of cyclotomic polynomiM pq(茁)is concerned for a long time.A simple and explicit expression of pq ()in Z[x]has been showed.The form of the factors of pq ()over F2 and the upper,lower bounds of their Hamming weight are provided. The mth cyclotomic polynomial §1 西m ()in Izj m x)is defined to be m x) Dedekind’S inversion formula, ()=II ( d一1) ‘ . dl n ( —e2Trik /).By ( ,m)=1 (1) We wil discuss the cyclotomic polynomial m ( ) in Z[x]and over F2 Ix],where Z and F2 denote integral ring and finite field respectively. It is wel known that西m ()is an irreducible polynomial in z]with degree (仃L),where denotes Euler function.If m0 den...
Wydział Matematyki i InformatykiW rozprawie doktorskiej zostały przedstawione wyniki autora dotycząc...
Wydział Matematyki i InformatykiW rozprawie doktorskiej zostały przedstawione wyniki autora dotycząc...
AbstractFor a given positive integer m and an algebraic number field K necessary and sufficient cond...
Cyclotomy is the process of dividing a circle into equal parts, which is precisely the effect obtain...
AbstractFor a given positive integer m and an algebraic number field K necessary and sufficient cond...
For odd square-free n ? 1 the cyclotomic polynomial \Phi n (x) satisfies the identity of Gauss 4\Phi...
The $n$th cyclotomic polynomial, $Phi_n(z)$, is the minimal polynomial of the $n$th primitive roots ...
In this paper, we present three results on cyclotomic polynomials. First, we present results about f...
The factors of polynomials of the form x^n-1, called cyclotomic polynomials, have various properties...
Abstract. We present three algorithms to calculate Φn(z), the nth cyclo-tomic polynomial. The first ...
AbstractLet P(x) ≠ x be a monic irreducible polynomial with integer coefficients such that for infin...
Let q be a prime power and let be a finite field with q elements. This paper discusses the explicit ...
Let $\Phi\sb{n}(z)$ denote the $n$th cyclotomic polynomial, given by$$\Phi\sb{n}(z) = {\prod\limits\...
Let $\Phi\sb{n}(z)$ denote the $n$th cyclotomic polynomial, given by$$\Phi\sb{n}(z) = {\prod\limits\...
Includes bibliographical references (pages 64-67)The nth cyclotomic polynomial Phi_n(x)is the mini...
Wydział Matematyki i InformatykiW rozprawie doktorskiej zostały przedstawione wyniki autora dotycząc...
Wydział Matematyki i InformatykiW rozprawie doktorskiej zostały przedstawione wyniki autora dotycząc...
AbstractFor a given positive integer m and an algebraic number field K necessary and sufficient cond...
Cyclotomy is the process of dividing a circle into equal parts, which is precisely the effect obtain...
AbstractFor a given positive integer m and an algebraic number field K necessary and sufficient cond...
For odd square-free n ? 1 the cyclotomic polynomial \Phi n (x) satisfies the identity of Gauss 4\Phi...
The $n$th cyclotomic polynomial, $Phi_n(z)$, is the minimal polynomial of the $n$th primitive roots ...
In this paper, we present three results on cyclotomic polynomials. First, we present results about f...
The factors of polynomials of the form x^n-1, called cyclotomic polynomials, have various properties...
Abstract. We present three algorithms to calculate Φn(z), the nth cyclo-tomic polynomial. The first ...
AbstractLet P(x) ≠ x be a monic irreducible polynomial with integer coefficients such that for infin...
Let q be a prime power and let be a finite field with q elements. This paper discusses the explicit ...
Let $\Phi\sb{n}(z)$ denote the $n$th cyclotomic polynomial, given by$$\Phi\sb{n}(z) = {\prod\limits\...
Let $\Phi\sb{n}(z)$ denote the $n$th cyclotomic polynomial, given by$$\Phi\sb{n}(z) = {\prod\limits\...
Includes bibliographical references (pages 64-67)The nth cyclotomic polynomial Phi_n(x)is the mini...
Wydział Matematyki i InformatykiW rozprawie doktorskiej zostały przedstawione wyniki autora dotycząc...
Wydział Matematyki i InformatykiW rozprawie doktorskiej zostały przedstawione wyniki autora dotycząc...
AbstractFor a given positive integer m and an algebraic number field K necessary and sufficient cond...