Multiple regression fits a model to predict a dependent (Y) variable from two or more independent (X) variables. If the model fits the data well, the overall R2 value will be high, and the corresponding P value will be low In addition to the overall P value, multiple regression also reports an individual P value for each independent variable. A low P value here means that this particular independent variable significantly improves the fit of the model. It is calculated by comparing the goodness-of-fit of the entire model to the goodness-of-fit when that independent variable is omitted. If the fit is much worse when that variable is omitted from the model, the P value will be low, telling you that the variable has a significant impact on the...