Pure Type Systems are usually described in two different ways, one that uses an external notion of computation like beta-reduction, and one that relies on a typed judgment of equality, directly in the typing system. For a long time, the question was open to know whether both presentations described the same theory. A first step toward this equivalence has been made by Adams for a particular class of Pure Type Systems (PTS) called functional. Then, his result has been relaxed to all semi-full PTS in previous work. In this paper, we finally give a positive answer to the general issue, and prove that equivalence holds for any Pure Type System.