We show that for every Lipschitz function f defined on a separable Riemannian manifold M (possibly of infinite dimension), for every continuous ε:M → (0,+∞), and for every positive number r> 0, there exists a C ∞ smooth Lipschitz function g:M → R such that |f (p) − g(p) | ε(p) for every p ∈ M and Lip(g) Lip(f)+ r. Consequently, every separable Riemannian manifold is uniformly bumpable. We also present some applications of this result, such as a general version for separable Riemannian manifolds of Deville–Godefroy–Zizler’s smooth variational principle. © 2006 Elsevier Inc. All rights reserved
AbstractWe characterize the class of separable Banach spaces X such that for every continuous functi...
Abstract. We construct a Lipschitz function f on X = R 2 such that, for each 0 6 = v 2 X, the functi...
AbstractA characterization of Lipschitz behavior of functions defined on Riemannian manifolds is giv...
AbstractWe show that for every Lipschitz function f defined on a separable Riemannian manifold M (po...
Abstract. Let us consider a Riemannian manifold M (either separable or non-separable). We prove that...
AbstractWe prove, among other things, that a Lipschitz (or uniformly continuous) mapping f:X→Y can b...
AbstractLet us consider a Banach space X with the property that every real-valued Lipschitz function...
AbstractA theorem in Azagra et al. (preprint) [1] asserts that on a real separable Banach space with...
AbstractIt is shown that on weakly compactly generated Banach spaces which admit a Lipschitz, Cp smo...
summary:Every separable Banach space with $C^{(n)}$-smooth norm (Lipschitz bump function) admits an ...
summary:We improve a theorem of P.G. Georgiev and N.P. Zlateva on G\^ateaux differentiability of Lip...
A famous theorem of H. Lebesgue states that a Lipschitz function f: [0, 1] → R is differentiable at ...
We derive new representations for the generalised Jacobian of a locally Lipschitz map between finite...
AbstractLet X be a separable Banach space with a separating polynomial. We show that there exists C⩾...
Our aim in this note is to give an extension of the classical Myers-Nakai theorem in the context of ...
AbstractWe characterize the class of separable Banach spaces X such that for every continuous functi...
Abstract. We construct a Lipschitz function f on X = R 2 such that, for each 0 6 = v 2 X, the functi...
AbstractA characterization of Lipschitz behavior of functions defined on Riemannian manifolds is giv...
AbstractWe show that for every Lipschitz function f defined on a separable Riemannian manifold M (po...
Abstract. Let us consider a Riemannian manifold M (either separable or non-separable). We prove that...
AbstractWe prove, among other things, that a Lipschitz (or uniformly continuous) mapping f:X→Y can b...
AbstractLet us consider a Banach space X with the property that every real-valued Lipschitz function...
AbstractA theorem in Azagra et al. (preprint) [1] asserts that on a real separable Banach space with...
AbstractIt is shown that on weakly compactly generated Banach spaces which admit a Lipschitz, Cp smo...
summary:Every separable Banach space with $C^{(n)}$-smooth norm (Lipschitz bump function) admits an ...
summary:We improve a theorem of P.G. Georgiev and N.P. Zlateva on G\^ateaux differentiability of Lip...
A famous theorem of H. Lebesgue states that a Lipschitz function f: [0, 1] → R is differentiable at ...
We derive new representations for the generalised Jacobian of a locally Lipschitz map between finite...
AbstractLet X be a separable Banach space with a separating polynomial. We show that there exists C⩾...
Our aim in this note is to give an extension of the classical Myers-Nakai theorem in the context of ...
AbstractWe characterize the class of separable Banach spaces X such that for every continuous functi...
Abstract. We construct a Lipschitz function f on X = R 2 such that, for each 0 6 = v 2 X, the functi...
AbstractA characterization of Lipschitz behavior of functions defined on Riemannian manifolds is giv...