ABSTRACT. A Riemann operator is constructed in which sequential elements are removed from a decaying set by means of prime factorization, leading to a form of exponential decay with zero degeneration, referred to as the root of exponential decay. A proportionate operator is then constructed in a similar manner in terms of the non-trivial zeros of the Riemann zeta function, extending proportionately, mapping expectedly always to zero, which imposes a ratio of the primes to said zeta roots. Thirdly, a statistical oscillation function is constructed algebraically into an expression of the Laplace transform that links the two operators and binds the roots of the functions in such a manner that the period of the oscillation is defined (and deriv...