For a brief time in its early evolution the Universe was a cosmic nuclear reactor. The expansion and cooling of the Universe limited this epoch to the first few minutes, allowing time for the synthesis in astrophysically interesting abundances of only the lightest nuclides (D, 3He, 4He, 7Li). For big bang nucleosynthesis (BBN) in the standard models of cosmology and particle physics (SBBN), the SBBN-predicted abundances depend on only one adjustable parameter, the baryon density parameter (the ratio by number of baryons (nucleons) to photons). The predicted and observed abundances of the relic light elements are reviewed, testing the internal consistency of primordial nucleosynthesis. The consistency of BBN is also explored by comparing the...