Abstract. We prove the compatibility at places dividing l of the local and global Langlands correspondences for the l-adic Galois representations associ-ated to regular algebraic essentially (conjugate) self-dual cuspidal automorphic representations of GLn over an imaginary CM or totally real field. We prove this compatibility up to semisimplification in all cases, and up to Frobenius semisimplification in the case of Shin-regular weight. Résumé. (Compatibilite ́ entre les correspondances de Langlands lo-cale aux places divisant l, II.) Nous prouvons la compatibilite ́ entre les correspondances de Langlands locale et globale aux places divisant l pour les représentations galoisiennes l-adiques associèes a ̀ des représentations auto-mor...
We present a new construction of the -adic local Langlands correspondence for via the patching metho...
Let p be a prime number, n>2 an integer, and F a CM field in which p splits completely. Assume th...
Let $F/F^+$ be a CM number field and $w|p$ a place of $F$ lying over a place of $F^+$ that splits in...
Abstract. We prove the compatibility of the local and global Langlands cor-respondences at places di...
We prove the compatibility of the local and global Langlands correspondences at places dividing l fo...
Abstract. We extend our methods from [24] to reprove the Local Langlands Corre-spondence for GLn ove...
We investigate local-global compatibility for cuspidal automorphic representations π for GL2 over CM...
We prove the compatibility of local and global Langlands correspondences for \(GL_n\), which was pro...
Abstract. We construct the compatible system of l-adic representations asso-ciated to a regular alge...
In this thesis, we study the compatibility between local and global Langlands correspondences for \(...
The deformation theory of automorphic representations is used to study local properties of Galois re...
We generalize the local-global compatibility result in arXiv:1506.04022 to higher dimensional cases,...
Nous généralisons le résultat de compatibilité local-global dans [Sch18] aux cas de dimension supéri...
We construct the compatible system of $\textit{l}$-adic representations associated to a regular alge...
Nous généralisons le résultat de compatibilité local-global dans [Sch18] aux cas de dimension supéri...
We present a new construction of the -adic local Langlands correspondence for via the patching metho...
Let p be a prime number, n>2 an integer, and F a CM field in which p splits completely. Assume th...
Let $F/F^+$ be a CM number field and $w|p$ a place of $F$ lying over a place of $F^+$ that splits in...
Abstract. We prove the compatibility of the local and global Langlands cor-respondences at places di...
We prove the compatibility of the local and global Langlands correspondences at places dividing l fo...
Abstract. We extend our methods from [24] to reprove the Local Langlands Corre-spondence for GLn ove...
We investigate local-global compatibility for cuspidal automorphic representations π for GL2 over CM...
We prove the compatibility of local and global Langlands correspondences for \(GL_n\), which was pro...
Abstract. We construct the compatible system of l-adic representations asso-ciated to a regular alge...
In this thesis, we study the compatibility between local and global Langlands correspondences for \(...
The deformation theory of automorphic representations is used to study local properties of Galois re...
We generalize the local-global compatibility result in arXiv:1506.04022 to higher dimensional cases,...
Nous généralisons le résultat de compatibilité local-global dans [Sch18] aux cas de dimension supéri...
We construct the compatible system of $\textit{l}$-adic representations associated to a regular alge...
Nous généralisons le résultat de compatibilité local-global dans [Sch18] aux cas de dimension supéri...
We present a new construction of the -adic local Langlands correspondence for via the patching metho...
Let p be a prime number, n>2 an integer, and F a CM field in which p splits completely. Assume th...
Let $F/F^+$ be a CM number field and $w|p$ a place of $F$ lying over a place of $F^+$ that splits in...