Abstract. Even though clustering trajectory data attracted consider-able attention in the last few years, most of prior work assumed that mov-ing objects can move freely in an euclidean space and did not consider the eventual presence of an underlying road network and its influence on evaluating the similarity between trajectories. In this paper, we present two approaches to clustering network-constrained trajectory data. The first approach discovers clusters of trajectories that traveled along the same parts of the road network. The second approach is segment-oriented and aims to group together road segments based on trajectories that they have in common. Both approaches use a graph model to depict the interactions between observations w.r...